

block capitals.		
	Candidate number	
	block capitals.	

AS **MATHEMATICS**

Unit Further Pure 1

Wednesday 14 June 2017 Morning Time allowed: 1 hour 30 minutes

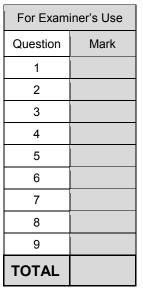
Materials

For this paper you must have:

the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Instructions


- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for guestions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

Answer all questions.

Answer each question in the space provided for that question.

1 A curve passes through the point (4,8) and satisfies the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2x + \sqrt{x}}$$

Use a step-by-step method with a step length of 0.3 to estimate the value of y at x=4.6. Give your answer to four decimal places.

[5 marks]

QUESTION PART REFERENCE	Answer space for question 1

QUESTION PART REFERENCE	Answer space for question 1
REFERENCE	

2		The equation $5x^2 + px + q = 0$, where p and q are constants, has roots α and α	+ 4.
(a))	Show that $p^2 = 20q + 400$.	[4 marks]
(b))	A quadratic equation has roots α^2 and $(\alpha + 4)^2$.	
	(i)	Find this quadratic equation, giving your answer in terms of q .	[3 marks]
	(ii)	Hence, or otherwise, given that the roots of this quadratic equation are equal, fi	nd the
		value of q .	[2 marks]
QUESTION PART	Ans	swer space for question 2	
REFERENCE			

QUESTION PART REFERENCE	Answer space for question 2
KEFEKENCE	

PART REFERENCE	Answer space for question 2

QUESTION PART REFERENCE	Answer space for question 2
KEFEKENCE	

- 3 It is given that z = i(1-i)(2+i).
 - (a) Show that z can be expressed in the form k+3i, where k is an integer.

[3 marks]

(b) Hence find the values of the integers m and n such that

$$(z-i)^* - mz = n(1+4i)$$

[5 marks]

QUESTION PART REFERENCE	Answer space for question 3

PART REFERENCE	Answer space for question 3
REFERENCE	

4 (a) Find, in terms of c and d, the value of $\int_{c}^{d} \frac{1}{2x \sqrt{x}} dx$, where 0 < c < d.

[3 marks]

(b) Hence show that only one of the following improper integrals has a finite value, and find that value:

(i)
$$\int_0^9 \frac{1}{2x \sqrt{x}} dx$$
;

(ii)
$$\int_9^\infty \frac{1}{2x \sqrt{x}} \, \mathrm{d}x \, .$$

[3 marks]

QUESTION PART REFERENCE	Answer space for question 4
7127 27127702	

QUESTION PART REFERENCE	Answer space for question 4

5 (a) Find the general solution of the equation

$$\tan\left(2x + \frac{\pi}{2}\right) = \sqrt{3}$$

giving your answer for x in terms of π in a simplified form.

[4 marks]

(b) Use your general solution to find the possible exact values of $\sin 3x - \sin 4x$ given that $\tan \left(2x + \frac{\pi}{2}\right) = \sqrt{3}$.

[3 marks]

QUESTION PART REFERENCE	Answer space for question 5

QUESTION PART REFERENCE	Answer space for question 5	

- An ellipse E_1 has equation $\frac{x^2}{16} + \frac{y^2}{4} = 1$.
 - (a) Find the area of the rectangle whose vertices are the points of intersection of the horizontal and vertical tangents to the ellipse E_1 .

[2 marks]

(b) The ellipse E_1 can be mapped onto a circle of radius 4 by means of a one-way stretch. Write down the matrix which represents this stretch.

[2 marks]

(c) The ellipse E_1 is translated by the vector $\begin{bmatrix} a \\ b \end{bmatrix}$ to give the ellipse E_2 .

The vertical tangents to E_2 have equations x = 7 and x = -1.

The equation of E_2 is $x^2 + 4y^2 + px + qy = 3$, where p and q are integers.

(i) Find the value of a.

[2 marks]

(ii) Find the value of p and the possible values of q .

[4 marks]

QUESTION PART	Answer space for question 6
REFERENCE	

QUESTION PART REFERENCE	Answer space for question 6	

- 7 Use the relevant formulae for $\sum_{r=1}^{n} r^3$, $\sum_{r=1}^{n} r^2$ and $\sum_{r=1}^{n} r$ to show that:
 - (a) $\sum_{r=1}^{n} (r^3 3r) = \frac{n}{4} (n+a)(n+b)(n+c), \text{ where } a, b \text{ and } c \text{ are integers};$

[4 marks]

(b) the sum of the series

$$1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + \dots - (2n)^2 = -n(pn+q)$$

where p and q are integers.

[4 marks]

QUESTION PART REFERENCE	Answer space for question 7

QUESTION PART REFERENCE	Answer space for question 7
KEFEKENCE	

8 The matrix **A** is defined by $\mathbf{A} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$.

(a) Given that
$$C = \begin{bmatrix} 2 & 4 \\ 6 & -2 \end{bmatrix}$$
 and $C - 2D = A$, find the matrix D .

[2 marks]

(b) Describe fully the single geometrical transformation represented by the matrix **A**. **[1 mark]**

(c) (i) The matrix **B** represents an anticlockwise rotation through an **obtuse** angle θ about the origin, where $\sin \theta = \frac{3}{5}$. Find the matrix **B**.

[2 marks]

(ii) The point (10, 15) is mapped onto point P under the transformation represented by \mathbf{A} followed by the transformation represented by \mathbf{B} . Find the coordinates of P.

[3 marks]

PART REFERENCE	Answer space for question 8

QUESTION PART REFERENCE	Answer space for question 8	

_	• ~.	
9	A curve C ha	is equation

$$y = \frac{2x^2 + 2x + 1}{(x+1)(x-3)}$$

The curve has two stationary points P and Q.

(a) Write down the equations of all the asymptotes of C.

[2 marks]

(b) The line y = k intersects the curve C. Show that $4k^2 - 3k - 1 \ge 0$.

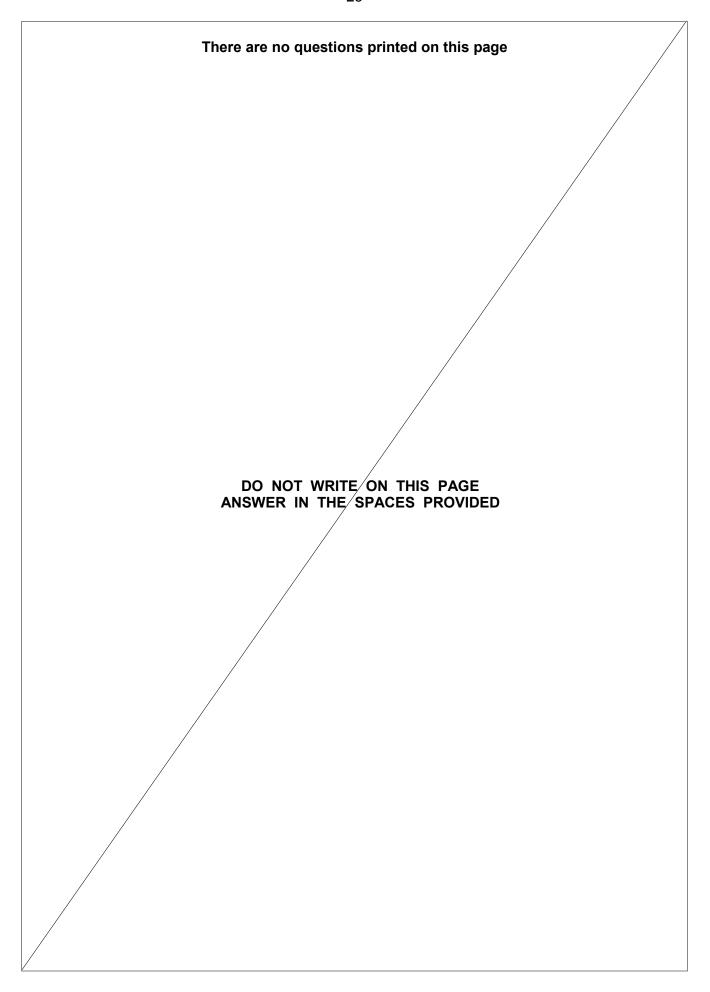
[5 marks]

(c) Hence find the length of the line segment PQ.

(No credit will be given for solutions based on differentiation.)

[7 marks]

QUESTION	Answer space for question 9
QUESTION PART REFERENCE	and open of quotien o



QUESTION PART REFERENCE	Answer space for question 9
REFERENCE	

QUESTION PART REFERENCE	Answer space for question 9	
	END OF QUESTIONS	

There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED Copyright Information For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2017 AQA and its licensors. All rights reserved.

